

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

REAL-TIME WIND ESTIMATION AND DISPLAY FOR
CHEM/BIO ATTACK RESPONSE USING UAV DATA

by

Cristián Sir

June 2003

 Thesis Advisor: Isaac Kaminer
 Co-Advisor: Vladimir Dobrokhodov

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
June 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Real-Time Wind Estimation and
Display for Chem/Bio Attack Response using UAV Data.

6. AUTHOR(S) Cristián Sir

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The defense response to a Chemical and Biological attack would be importantly
based on predicting the dispersion of a toxic cloud. Considering that an Unmanned Air
Vehicle would provide the capability for embedding and positioning inertial and air
data sensors geographically as required, real-time wind estimation can be performed
for every actual position of the flying device in order to predict the plume moving
direction. The efforts in this thesis concentrate on the demonstration and validation
of procedures for obtaining Wind Estimation close to real-time and its instantaneous
display. The presented work is based on a particular UAV platform available at the
NPS Aeronautical Department and it aims to establish a general methodology, which may
be used on other flying devices with similar available sensors. An accurate
estimation of real wind for a particular combat scenario will enable operational
units to have a near real-time decision aid. This final result could be integrated
into a Command and Control net, to assist in a focused way the response to a Chemical
and Biological attack and to map the source or the region to be affected.

15. NUMBER OF
PAGES

88

14. SUBJECT TERMS
Unmanned Air Vehicle, UAV, Wind Estimation, Real-Time Workshop, xPC
Target, SIMULINK, Inertial Measurement Unit, IMU, and Coordinate
Systems. 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

REAL-TIME WIND ESTIMATION AND DISPLAY FOR CHEM/BIO
ATTACK RESPONSE USING UAV DATA

Cristián Sir

Lieutenant Commander, Chilean Navy
B.Eng. (Electronics), Educational Headquarters, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING WITH
AVIONICS SUBSPECIALTY

from the

NAVAL POSTGRADUATE SCHOOL
June 2003

Author: Cristián Sir

Approved by: Isaac Kaminer
Thesis Advisor

Vladimir Dobrokhodov
Co-Advisor

Max F. Platzer
Chairman
Department of Aeronautics and Astronautics

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The defense response to a Chemical and Biological

attack would be importantly based on predicting the

dispersion of a toxic cloud. Considering that an Unmanned

Air Vehicle would provide the capability for embedding and

positioning inertial and air data sensors geographically as

required, real-time wind estimation can be performed for

every actual position of the flying device in order to

predict the plume moving direction. The efforts in this

thesis concentrate on the demonstration and validation of

procedures for obtaining Wind Estimation close to real-time

and its instantaneous monitoring. The presented work is

based on a particular UAV platform available at the NPS

Aeronautical Department and it aims to establish a general

methodology, which may be used on other flying devices with

similar available sensors. An accurate estimation of real

wind for a particular combat scenario will enable

operational units to have a near real-time decision aid.

This final result could be integrated into a Command and

Control net, to assist in a focused way the response to a

Chemical and Biological attack and to map the source or the

region to be affected.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. OBJECTIVES ...2

II. BACKGROUND ..3
A. THE UAV PLATFORM (NPS FROG)3
B. DIFFERENTIAL GOLOBAL POSITIONING SYSTEM (DGPS)6
C. INERTIAL MEASUREMENT UNIT (IMU)7

1. IMU Overview7
2. IMU Sensors Summary9

a. Onset Tattletale 8 Microprocessor9
b. DGPS Trimble Ag132 ASCII Format11
c. DGPS Trimble Ag132 Data Conversion12
d. DGPS Time Issues14
e. 3DM Accelerometer and Magnetometer15
f. AQRS 104 Rate Gyros17
g. IMU Data Format18

D. AIR DATA ..18
1. Air Speed18
2. Angle of Attack and Sideslip Angle Sensor21

E. COORDINATE SYSTEMS22
1. True Inertial Coordinate System {I}23
2. Local Tangent Plane Coordinate System {LTP} ..23
3. Body-Fixed Coordinate System {b}24
4. Wind or Flight Path Coordinate System {w}25
5. Coordinate Transformations26

a. Body to Inertial {b} to {I}26
b. Wind to Body {w} to {b}28

F. WIND ESTIMATION THEORY28
III. WIND ESTIMATION MODEL31

A. WIND ESTIMATION SOLUTION MODULE32
B. DATA RECEPTION MODULE34
C. DATA CALIBRATION MODULE36

1. The IMUout Vector37
2. The GPSout Vector39
3. The A2Dout Vector40

IV. FLIGHT TEST ..41
A. FLIGHT TEST PROFILE AND GENERAL PROCEDURES42
B. TEST FLIGHT RESULTS44
C. REAL-TIME PRESENTATION FOR WIND ESTIMATION46

V. CONCLUSIONS AND RECOMENDATIONS47
A. CONCLUSIONS47

viii

B. RECOMMENDATIONS47
APPENDIX A. DESCRIPTION OF THE FOG-R UAV (NPS FROG)49
APPENDIX B. WIND ESTIMATION MODULE DESCRIPTION51
APPENDIX C. SOFTWARE DRIVERS55

1. SERIAL DATA RECEIVE DRIVER55
2. ANALOG TO DIGITAL DATA RECEIVE DRIVER60
3. GPS DATA RECIEVER DRIVER62
4. IMU DATA RECEIVE DRIVER64

LIST OF REFERENCES ..67
INITIAL DISTRIBUTION LIST69

ix

LIST OF FIGURES

Figure II.1 FROG UAV Three View Drawing.3
Figure II.2 FROG UAV Engine Configuration.4
Figure II.3 FROG UAV Actual Configuration5
Figure II.4 DGPS Trimble Ag132 Main Components and

Mounting Locations.6
Figure II.5 IMU Architecture and Data Rates9
Figure II.6 Data Link Modems10
Figure II.7 Pitot-Static Probe Layout20
Figure II.8 Pressure Transducer20
Figure II.9 Pitot-Static Probe Mounted on FROG20
Figure II.10 α and β Definition21
Figure II.11 α and β Vanes Mounted on Potentiometers22
Figure II.12 Local Tangent Plane Coordinate System24
Figure II.13 Body Frame Angular Rates Definition25
Figure II.14 Wind Coordinate System Definition26
Figure II.15 Wind Estimation Solution29
Figure III.1 Wind Estimation Model Layout31
Figure III.2 Wind Estimation Input Visualization and

General Layout33
Figure III.3 Data Receive Layout and RS-232 Setup35
Figure III.4 Data/Header Block Details35
Figure III.5 Data Decoder36
Figure III.6 Calibration Module IMUout Vector37
Figure III.7 Alpha and Beta Sensor Calibration Results38
Figure III.8 Calibration Module GPSout Vector40
Figure III.9 Calibration Module A2Dout Vector40
Figure IV.1 XPC Target Environment [Ref. 6]41
Figure IV.2 Flight profile of FROG during test flight

(left) and McMillan Airfield (right)42
Figure IV.3 Instrumented Portable Meteorological Tower ...43
Figure IV.4 Wind Estimation Results Straight Path44
Figure IV.5 Wind Direction Results45
Figure IV.6 Real-Time Presentation Example46

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table II.1 FROG UAV Physical Characteristics5
Table II.2 DGPS Trimble Ag132 Messages7
Table II.3 IMU State Vector Components8
Table II.4 $GPGGA Sentence Structure11
Table II.5 $GPRMC Sentence Structure12
Table II.6 DGPS Binary Data Package Format14
Table II.7 3DM Magnetometer and Accelerometer Data

Format17
Table II.8 IMU Data Headers18
Table IV.1 Wind Results Comparison45

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

ACKNOWLEDGMENTS

First and foremost, I would like to thank Dr. Vladimir

Dobrokhodov for guiding me through most of the work

presented on this thesis. His patience and understanding

gave me the motivation to keep moving forward and

accomplishing the numerous challenges involved. It was a

true pleasure to have applied the engineering tools learned

at NPS under Dr. Dobrokhodov’s working methodology and

logical supervision.

Secondly, many thanks go to Mr. Jerry Lentz for making

every technical aspect involved in this work possible and

for his many insights during my research. His breadth of

knowledge never ceased to amaze me.

Finally, I would like to express my gratitude to Dr.

Isaac Kaminer for his academic advise and for giving me the

chance to join his great Controls Systems team where I had

the opportunity to work with Dr. Oleg Yakimenko and Dr.

Dobrokhodov. I learned a lot and really enjoyed working

with them.

There’s also another great team that put a lot of work

in this thesis and during my rewarding stay at Monterey:

Ana María, Cristián Jr. and María José. Everything is

dedicated to you guys.

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

DISCLAIMER

The mention of commercial products in this thesis does

not imply endorsement by the United States of America

Government.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Chemical and biological (Chem/Bio) weapons have posed

a defense response security concern for some time and have

gained a renewed focus due to actual tactical scenario

threats. In order to successfully respond to attacks by

such weapons the dispersion of a toxic cloud is important

to measure and predict. Work in this thesis supported a

Chem/Bio response project, which was a joint effort between

the NPS Aeronautics and Astronautics Department and

Meteorology Department to demonstrate and validate a method

for the synthesis of measurements and predictions to aid in

the response to a chemical and biological attack.

One of the key features of the Chem/Bio response

project was the prediction of a toxic plume movement, which

strongly depends on the actual wind velocity in the combat

scenario. Using an Unmanned Air Vehicle (UAV) for

geographically positioning inertial and air data sensors,

obtained measurements and sensed data was used as the input

for a Real-Time Wind Estimation solution.

This thesis research concentrates on the demonstration

and validation of procedures for obtaining Wind Estimation

close to real-time and its instantaneous monitoring. The

presented work is based on a particular UAV platform

available at NPS Aeronautical Department and it aims to

establish a general methodology, which may be used on other

flying devices with similar available sensors.

An accurate estimation of real-time wind for a

particular combat scenario will enable Operational Units to

have an important decision aid which can be later

integrated into a Command and Control net to assist in a

2

focused way the response to a Chem/Bio attack. Furthermore,

this real wind estimation can be used to map the source of

the plume as well as the region to be affected.

A. OBJECTIVES

The starting point for this thesis research is the

identification and understanding of available data that

will be generated on an UAV platform and that will be

available on a ground station as it is transmitted via Data

Link.

This available data includes a Differential Global

Position System (DGPS), an Inertial Measurement Unit (IMU),

an Air Data System and a Data Link assembly; all of them

embedded onboard the NPS FROG UAV. All the necessary

background to understand and identify the generation of the

inputs that will be later used for Wind Estimation is

included in Chapter Two (II.). It also includes a brief

description of the UAV and the Data Link system used.

Chapter Three (III.) will focus on the development of

the proposed Wind Estimation Model. This work used SIMULINK

for solving necessary applied mathematics in the Wind

Estimation calculation and XPC Target software package to

carry out the required real-time signal processing and

results presentation.

Chapter Four (IV.) will cover the flight test setup

and data acquisition that lead to the model validation.

Flight test results will be discussed and the model will be

evaluated against the meteorological wind measurements.

Finally, on Chapter Five (V.) recommendations and

conclusions will be presented.

3

II. BACKGROUND

A. THE UAV PLATFORM (NPS FROG)

The FROG UAV is a small high wing monoplane used for

Digital Control System research by the Department of

Aeronautics of the Naval Postgraduate School. The airplane

is manufactured by BAI Aerosystems Inc., as the “BAI TERN”

(Tactically Expendable Remote Navigator), and was formerly

designated the FOG-R by the U.S. Army. In the FOG-R

configuration the airplane has been flown non-line-of-sight

using a fiber optic Data Link for command uplink and video

downlink. The wing is fitted with flaps that can be trimmed

to provide slow flight speeds for surveillance and extended

to facilitate tight landings.

Figure II.1 FROG UAV Three View Drawing.

FROG is equipped with conventional elevator, rudder,

ailerons and flaps. Small servomotors, designed for use in

radio-controlled airplanes, actuate the control surfaces.

4

This UAV was designed to carry up to twenty-two pounds

of payload for periods of up to four hours. It is actually

equipped with a Model BA64 6.4 cubic inch, horizontally

opposed, piston engine, manufactured by Brinson Aircraft

Company. The 2-cylinder engine developed 9.3 Hp and is

equipped with a two bladed propeller mounted in a tractor

orientation in a nacelle atop the wing, as depicted in

Figure (II.2). The FROG has fixed tricycle landing gear

with a steer able nose wheel. The empennage is connected to

the body of the airplane by a 1.75 inch diameter aluminum

tube.

Figure II.2 FROG UAV Engine Configuration.

FROG is currently in use as a test bed for airborne

sensor systems and advance control projects for the

Aeronautics and Astronautics Department at NPS. In the

past, the NPS’s FROG had been configured with a variety of

sensors including an onboard autopilot, various inertial

measurement units, GPS receivers, an instrumented nose boom

and a digital camera.

5

The FROG’s significant physical characteristics are

presented in Table II.1.

PARAMETER MEASUREMENT

Length 8.125 ft

Height 1.75 ft

Weight 67.7 lbs

Power Plant 9.3 Hp / 2 Cycle

Wing Airfoil NACA 2415

Horizontal Stabilizer Airfoil NACA 0006 (Approx.)

Wing Span (b) 126.5 in

Tail Span (bw) 39.75 in

Vertical Tail Span (bv) 15.0 in

Aspect Ratio (AR) 6.32

Table II.1 FROG UAV Physical Characteristics

More details on the FROG characteristics and its

engine are documented in Appendix A [Ref. 1].

Figure II.3 FROG UAV Actual Configuration

6

B. DIFFERENTIAL GLOBAL POSITIONING SYSTEM (DGPS)

The GPS receiver used on the FROG is Trimble Ag132

DGPS shown in Figure (II.4). The Ag132 DGPS is a 12 channel

L-band differential correction receiver that provides sub-

meter accuracy. It combines a GPS receiver, a beacon

differential receiver, and a satellite differential

receiver in the same housing. These receivers use a

combined antenna with a single antenna cable. The Ag132 is
configured with two programmable RS-232 serial ports and

outputs GPS data at 1, 5 or 10 Hz with latency of 10 msec

in RS-232 serial ASCII format at baud rates up to 38,400

bps. All outputs conform to the National Marine Electronics

Association (NMEA)-0183 data protocol.

Figure II.4 DGPS Trimble Ag132 Main Components and
Mounting Locations.

Among the various sentences in the GPS data stream

shown in Table II.2, only information in the $GPGGA (GGA)

and the $GPRMC (RMC) sentences is relevant to this

application.

7

MESSAGE CONTENTS

GGA Time, position and fix related data.

GLL Position fix, time of position fix and status.

GRS GPS Range Residuals.

GSA
GPS position fix mode, SVs used for navigation and
DOP values.

GST GPS Pseudorange Noise Statistics.

GSV
Number of SVs visible, PRN numbers, elevation,
azimuth and SNR values.

MSS
Signal strength, signal-to-noise ratio, beacon
frequency and beacon bit rate.

RMC
UTC time, status, latitude, longitude, speed over
ground (SOG), date and magnetic variation of the
position fix.

VTG Actual track made good and speed over ground.

XTE Message Cross-track error.

ZDA
UTC time, day, month, year, local zone number and
local zone minutes.

PTNLDG
Proprietary

Beacon channel strength, channel SNR, channel
frequency, channel bit rate, channel number,
channel tracking status, RTCM source and channel
performance indicator.

PTNLEV
Proprietary

Time, event number, and event line state for time-
tagging change of state on a event input line.

PTNL, GGK Time, Position, Position Type and DOP Values.

PTNLID
Proprietary

Receiver machine ID, product ID, major and minor
release numbers and firmware release date.

PTNLSM
Reference Station Number ID and the contents of
the Special Message included in valid RTCM Type 16
records.

Table II.2 DGPS Trimble Ag132 Messages

C. INERTIAL MEASUREMENT UNIT (IMU)

1. IMU Overview

The Inertial Measurement Unit (IMU) that was built for

the FROG to be used for this research work consists of four

separate sensors and two microprocessors that are used to

integrate and transmit sensor measurements. The sensors

8

consist of the Trimble Ag132 DGPS, an Air Data assembly, a

Microstrain 3DM accelerometer and magnetometer, and a

Systrom Donner AQRS 104 rate gyros set. The microprocessor

units are Tattletale8 Data Logger from Onset Corporation.

The two microprocessors are programmed in Tattletale C (a

variation of ANSI standard C) and control the timing,

measurement and transmission of all sensors. The combined

sensor output provides measurements of the complete state

vector with the exception of heading angle ψ, which can be

computed from the other components of the state vector.

Table (II.3) shows the complete measurement values,

associated sensors and the data rate at which the

measurements are available.

STATE VECTOR NOTATION RATE SENSOR NOTES
Roll Rate p 40 Hz AQRS 104 4.096 Volt A to D sample

Pitch Rate q 40 Hz AQRS 104 4.096 Volt A to D sample

Yaw Rate r 40 Hz AQRS 104 4.096 Volt A to D sample

Temperature Temp 40 Hz OAT 4.096 Volt A to D sample

Alpha α 20 Hz AQRS 104 4.096 Volt A to D sample

Beta β 20 Hz AQRS 104 4.096 Volt A to D sample

Airspeed Vair 40 Hz Air Data 4.096 Volt A to D sample

Accel. X component Ax 20 Hz 3DM RS-232 9,600 baud

Accel. Y component Ay 20 Hz 3DM RS-232 9,600 baud

Accel. Z component Az 20 Hz 3DM RS-232 9,600 baud

Mag. Vect. X comp. Hx 20 Hz 3DM RS-232 9,600 baud

Mag. Vect. Y comp. Hy 20 Hz 3DM RS-232 9,600 baud

Mag. Vect. Z comp. Hz 20 Hz 3DM RS-232 9,600 baud

GPS Time t 10 Hz DGPS RS-232 38,400 baud

GPS Latitude Lat 10 Hz DGPS RS-232 38,400 baud

GPS Longitude Long 10 Hz DGPS RS-232 38,400 baud

GPS Altitude Alt 10 Hz DGPS RS-232 38,400 baud

GPS Ground Speed Knt GrndSpd 10 Hz DGPS RS-232 38,400 baud

GPS Ground Track Deg GrndTrk 10 Hz DGPS RS-232 38,400 baud

GPS Mag.Var.Deg MagVar 10 Hz DGPS RS-232 38,400 baud

Table II.3 IMU State Vector Components

9

2. IMU Sensors Summary

Sensor data rate is an important element when handling

data obtained by different components. Data rates of 20 Hz

for the Euler Angles rates (p, q, & r) are known to be

acceptable. Realistically a data rate of 30 to 40 Hz is

required for the optimal digital signal processing. Each

sensor has its own inherent limitations that restrict the

maximum allowable data rate. Measurements from each sensor

are taken at various data rates and merged together in

order to achieve a high data rate yet maintain an easily

decoded and error free data stream.

Figure II.5 IMU Architecture and Data Rates

a. Onset Tattletale 8 Microprocessor

The Tattletale8 Microprocessor from Onset

Computer Corporation is designed to be a data logger that

can either be programmed in Tx Basic or C Programming. The

Tattletale8 has a Motorola 68332 microprocessor, 8 channels

to make analog to digital conversion (A to D) samples using

10

a 4.096 volt reference, two RS-232 serial communications

ports, a system clock adjustable from 160 KHz to 16 MHz,

and 15 digital (0 to 5 volts) lines that can be used to

transmit serial data at up to 500 Kbps.

As seen on previous Figure (II.5), two

Tattletale8 are used to process the data and measurements

made by the IMU. One Tattletale8 is dedicated to the

processing of serial GPS data and taking A to D samples

from the Air Data system. The second Tattletale8 takes the

serial output of the 3DM, A to D samples for the IMU

sensors (Rate Gyros and Air Speed), and controls all of the

measurement and transmission timing. The GPS Tattletale8

transmits its data to the 3DM Tattletale8 via the digital

lines.

The communication link between the UAV and the

ground station computer is implemented with wireless

modems. Each modem uses frequency hopping spread spectrum

technology and has a power output of 1/3 Watts. They are

capable of communicating over a line of sight with range of

up to 20 miles, and to support data transmission at baud

rates from 1200 bps to 115.2 Kbps. The ground station

computer performs the real-time data logging and processes

the transmitted data according to the Wind Estimation

algorithm.

Figure II.6 Data Link Modems

11

b. DGPS Trimble Ag132 ASCII Format

The Trimble Ag132 GPS is capable of outputting

data at 1, 5 or 10 Hz utilizing an RS-232 serial ASCII data

format at baud rates up to 38,400 bps. All output conforms

to the National Marine Electronics Association (NMEA) GPS

data protocol used by GPS receivers to transmit data.

Different lines of NMEA data can be selected to be included

in the GPS data stream. The lines that contain relevant GPS

information for this thesis are the $GPGGA and $GPRMC

sentences. The setting of the GPS output used for these two

sentences was 10 Hz at a baud rate of 38,400 bps. Tables

(II.4) and (II.5) show the breakdown of the ASCII text

output and an example conversion. Shaded values indicate

information not included in final IMU data stream.

$GPGGA Sentence: Global Positioning System Fix Data
EXAMPLE: $GPGGA, 001218.80, 3635.761652, N, 12152.607700, W, 2, 08, 1.1,
 15.14, M, -27.47, M, 5.4, 0565*45

Field Description Data Notes

1 UTC of Position 001218.80
Fix at 00:12:18.80
UTC

2 Latitude 3635.761652 LAT 36° 35.761652’

3 N or S N North Latitude

4 Longitude 12152.60770 LONG 121° 52.6077’

5 E or W W West Longitude

6
GPS quality indicator
0=invalid 1=GPS fix 2=DGPS fix

2 DGPS Mode

7 Number of satellites in use 08 8 Sats. in use

8 Horizontal dilution of position 1.1 HDOP 1.1

9 Altitude +/- mean sea level (geoid) 15.14
15.14 Meters above
S.L.

10 Meters (Antenna height unit) M Meters

11
Geoidal separation (Diff. between
WGS-84 earth ellipsoid and mean sea
level - = geoid is below ellipsoid)

–27.47 -27.47 below

12 Meters (Units of Geoidal sep.) M Meters

13
Age in seconds since last update from
Diff. reference station

5.4 5.4 seconds old

14 Diff. reference station ID# 0565 Station #

15 Checksum *45 Checksum

Table II.4 $GPGGA Sentence Structure

12

$GPRMC Sentence: Recommended Min. Spec. GPS/TRANSIT Data
EXAMPLE: $GPRMC, 001218, A, 3635.761652, N, 12152.607700, W, 000.00, 0.0,
 170401, 15.3, E, D*03

Field Description Data Notes

1 UTC of position fix 001218
Fix at 00:12:18.80
UTC

2
Data status (V navigation receiver
warning)

A
Receiver Status
Valid

3 Latitude of fix 3635.761652 LAT 36° 35.761652’

4 N or S N North Latitude

5 Longitude of fix 12152.60770 LONG 121° 52.6077’

6 E or W W West Longitude

7
Speed over ground in Knots (0-3
decimal places)

000.00
0.0 Knots ground
speed

8 True Ground Track in degrees True 0.0 0.0° ground track

9 UTC date 170401 April 17, 2001

10
Magnetic Variation degrees (Easterly
Var. subtracts from true course)

15.3
Magnetic Variation
15.3°

11 E or W E East

12 Checksum D*03 Checksum

Table II.5 $GPRMC Sentence Structure

c. DGPS Trimble Ag132 Data Conversion

The $GPGGA and $GPRMC sentences combine 161 ASCII

text characters. This data is received approximately 10

times per second and would take up about one third of the

available bandwidth of the final IMU data stream at 38,400

bps, if all of the text values were transmitted. Therefore,

it is necessary to sort out and transmit only the

information required by the application. Transmitting the

critical data in a binary format allows the total data

stream to be reduced to 29 bytes of binary data. Each GPS

data package includes a two-byte header to indicate the

start of the GPS message, bringing the total GPS packet

size to 31 bytes.

Data is transmitted in a binary format as a

series of 8 bit bytes. The serial driver that is receiving

the data stream must decode it before it can be used.

Values that range between 0 and 255 are represented by a

13

single byte of data and no conversion is necessary. Values

that range between 0 and 65535 are represented by a two

byte integer with the most significant byte (MSB)

transmitted first, followed by the least significant byte

(LSB). To decode the two-byte integer the MSB must be

multiplied by the placeholder value of 256 (28) and added to

the LSB. When decoding entire bytes the placeholder values

increase by factors of 28 (Ex: 20, 28, 216, 224, etc). This is

a simple conversion that can be implemented in most

programming languages. It is worth noting, however, that

this only works for unsigned values. If signed values are

used, the bits of the MSB must be shifted by the

appropriate amount to preserve the integrity of whatever

signing convention is used. Numbers greater than 65535 are

represented by a four-byte long integer with the MSB

transmitted first. The four byte sequence is decoded using

the following equation: long integer = 224xByte1 + 216xByte2

+ 28xByte3 + 20xByte4. Table (II.6) shows the format of the

DGPS data and method required to convert the data to a

useable number format.

DGPS Data Package Format
EXAMPLE: $GPGGA, 001218.80, 3635.761652, N, 12152.607700, W, 2, 08, 1.1,
 15.14, M, -27.47, M, 5.4,0565*45
 $GPRMC, 001218, A, 3635.761652, N, 12152.607700, W, 000.00, 0.0,
 170401, 15.3, E ,D*03

Data Description Notation Bytes Text Binary Decoding Method

GPS Data Package Header GPS Header 2
238
238

Hex values EE EE

Hours (00 – 23) timeHH 1 00 00 N/A

Minutes (00 – 59) timeMM 1 12 12 N/A

Seconds (00 – 59) timeSS 1 18 18 N/A

Decimal Seconds (0 – 9) timeDecSS 1 8 08 N/A

Degrees LAT (00 – 90) latDeg 1 36 36 N/A

Minutes LAT (00 – 60) latMin 1 35 35 N/A

14

DGPS Data Package Format
EXAMPLE: $GPGGA, 001218.80, 3635.761652, N, 12152.607700, W, 2, 08, 1.1,
 15.14, M, -27.47, M, 5.4,0565*45
 $GPRMC, 001218, A, 3635.761652, N, 12152.607700, W, 000.00, 0.0,
 170401, 15.3, E ,D*03

Data Description Notation Bytes Text Binary Decoding Method

Decimal Minutes LAT
(0 –7 decimal places)

latDecMin 4 761652

00
11
159
52

MSB 1st
224xByte1+216xByte2+
28xByte3+20xByte4

Degrees LONG (00 – 180) longDeg 1 121 121 N/A

Minutes LONG (00 – 60) longMin 1 52 52 N/A

Decimal Minutes LONG
(0 –7 decimal places)

longDecMin 4 607700

00
09
69
212

MSB 1st
224xByte1+216xByte2+
28xByte3+20xByte4

DGPS status diffGPS 1 2 02 N/A

Altitude in meters altMeters 2 15
00
15

MSB 1st LSB 2nd
28xByte1+20xByte2

Altitude in tenths of
meters

altDecMts 1 14 14 N/A

Groundspeed in knots grndSpeed 2 000
00
00

MSB 1st LSB 2nd
28xByte1+20xByte2

Groundspeed in tenths
of knots

grndSpeedDe
cimal

1 00 00 N/A

Ground track in degrees
(0-359)

grndTrack 2 0
00
00

MSB 1st LSB 2nd
28xByte1+20xByte2

Ground track in tenths
of degrees

grndTrackDe
cimal

1 0 00 N/A

Magnetic variation in
degrees

magVar 2 15
00
15

MSB 1st LSB 2nd
28xByte1+20xByte2

Magnetic variation in
tenths of degrees

magVarDec 1 3 3 N/A

Table II.6 DGPS Binary Data Package Format

d. DGPS Time Issues

At 10 Hz the DGPS should transmit the $GPGGA and

$GPRMC sentences every 100 ms. For the DGPS signal the

ASCII text data is reliably received at 10 samples per

second without any dropouts on lost sample times. The exact

timing of the arrival of the GPS data has a huge amount of

variability. On average, data is received every 100 ms. A

particular sample, however, may arrive early or it may be

as late as 100 ms (i.e. 200 ms between samples). This

creates great problems when regularly sampled inputs are

15

required. When the DGPS data does not arrive in time, the

DGPS parsing routine waits for all of the data to arrive.

Therefore, it is important that critical timing of

measurements not to be based on or delayed by the arrival

of the DGPS signal. Specific programming implementation

regarding this problem must be addressed.

e. 3DM Accelerometer and Magnetometer

The 3DM module has an orthogonal array of DC

accelerometers and magnetometers that measure all three

components of the local acceleration and magnetic vectors.

The unit is capable of transmitting computed roll, pitch,

and yaw angles or raw acceleration and magnetic vectors.

The 3DM uses the Earth’s gravity vector to compute the

orientation of the sensor in pitch and roll direction.

Using the magnetic vector and the pitch and roll angles,

the 3DM can compute the yaw angle and therefore is able to

determine all three Euler Angles. This method works well

when the unit is in a static position; however, it will not

work during accelerated flight onboard the UAV. When the

UAV is in maneuvering flight (Ex: 60° AOB level turn at 2

Gs) the unit will incorrectly measure the Earth’s gravity

vector and consequently generate erroneous Euler angle

measurements. Therefore, only the raw acceleration and

magnetic vectors are output from the 3DM and valid results

for Wind Estimation are only expected for a close to

straight and level flight condition.

The 3DM transmits RS-232 serial data at 9,600

bps. The device can be put into one of two communication

modes: polled or continuous. When the device is in

continuous mode it sends packets of data to the computer

continuously. In polled mode the unit only sends data if a

16

controlling computer prompts it. This is a more robust

communications mode that requires less error checking. The

polled mode is normally selected by sending the 3DM the

ASCII character “t”. The 3DM installed in the Frog IMU,

however, has a special EEPROM that allows only the polled

mode. This was done to solve a problem with the device

unpredictable switching communication modes. Thus, the 3DM

can only be operated in the polled mode.

When operating in polled mode it is necessary to

send 3DM a specific one-byte command word before it will

transmit its data. To receive the complete acceleration and

magnetic vectors the binary value 10010000 (decimal number

144) must be sent to 3DM. After receiving the appropriate

command word, 3DM will transmit the data shown in Table

(II.7). This data is stored in a buffer in the Tattletale8

microprocessor and is transmitted at the appropriate time.

The 3DM is polled and the sensor’s data is updated at a

rate of 20 Hz. The remaining parameters of the IMU data

package are measured at 40 Hz.

To simplify the decoding of the IMU data a

standard IMU package is transmitted at 40 Hz. The 20 Hz 3DM

data is only updated every other frame even though the 12

bytes of data is transmitted every single frame. A close

examination of the 3DM output will reveal that the data

occurs in repeated pairs. This may create some problems if

the acceleration or magnetic data needs to be analyzed in

the frequency domain. The data is transmitted MSB first and

LSB second for each measured value. The bytes can be

decoded as Value = 28xByte1 + 20xByte2. Table (II.7) shows

the order of data.

17

Data Description

Diagnostic Byte
0x41h if Valid; 0x6Xh if error

(“X” is an error code)

HX-m X Axis Magnetometer Data MSB

HX-l X Axis Magnetometer Data LSB

HY-m Y Axis Magnetometer Data MSB

HY-l Y Axis Magnetometer Data LSB

HZ-m Z Axis Magnetometer Data MSB

HZ-l Z Axis Magnetometer Data LSB

AX-m X Axis Accelerometer Data MSB

AX-l X Axis Accelerometer Data LSB

AY-m Y Axis Accelerometer Data MSB

AY-l Y Axis Accelerometer Data LSB

AZ-m Z Axis Accelerometer Data MSB

AZ-l Z Axis Accelerometer Data LSB

Table II.7 3DM Magnetometer and Accelerometer Data
Format

f. AQRS 104 Rate Gyros

The Systrom Donner AQRS 104 rate gyros measure

the angle rates of change (p, q, & r) about the Body-Fixed

axis. The angle rates are measured by an Analog to Digital

converter sampled from the Tattletale8. Since measurements

only require an A to D sample, the only timing issue

involved in determining the maximum sample rate is the time

required for the Tattletale8 to make an A to D sample.

Therefore the maximum sample rate is only limited by the

rate at which the Tattletale8 can make A to D samples and

transmit them to the modem. Current software is set to

sample at 40 Hz. The three sensors are actually wired to

the Tattletale8 in the order (p, r, & q), so the samples

18

have been reversed in software to provide the conventional

order (p, q, & r) in the output data stream.

g. IMU Data Format

In order to distinguish each package of data a

two-byte header is added to the beginning of each data

package as shown on Table (II.8):

Data Header Formats

Header
(Hex)

Header
(Decimal)

Data Type
Data
Size

Order

FF FF 255 255 IMU TT A to D Data 28 Bytes MSB, LSB

EE EE 238 238 GPS Data 29 Bytes MSB, LSB

DD DD 221 221 GPS TT A to D Data 16 Bytes MSB, LSB

Table II.8 IMU Data Headers

D. AIR DATA

1. Air Speed

Two basic pressures are used for measurement of

airspeed, static and total pressure. The static pressure is

the atmospheric pressure at the flight level of the

aircraft, while the total pressure is the sum of the static

and the impact pressure, which is the pressure developed by

the forward speed of the aircraft. The relation of the

three pressures can thus be expressed by the following

equation:

 t cp p q= + (1)

Where pt is the total pressure, p is the static

pressure, and qc the impact pressure.

19

In incompressible flow, the pressure developed by the

forward motion of a body is called the dynamic pressure q,

which is related to the true airspeed V by the equation:

 21

2
q Vρ= (2)

From Equation (2), ρ is the density of the air and V

is the speed of the aircraft relative to the air.

For compressible flow, the measured impact pressure qc

is higher than the dynamic pressure and the effects of

compressibility must be taken into account. Since the FROG

operates in the low subsonic range, compressibility effects

are ignored.

The airspeed of the FROG is computed based on dynamic

pressure measurement using a pitot-static probe mounted at

a wingtip and pressure transducers. The dynamic pressure is

“fed” into a pressure transducer that in turn converts it

to the analog voltage signal. With proper calibration and

application of Equation (2), the airspeed of the UAV can be

computed.

The pitot-static probe is a straight 26 inches long

conventional type with four static pressure sensing ports

located 1.125 inches aft of the total pressure port.

The pressure transducer used is a 0–4 inches H2O

differential pressure transducer that gives an output

signal of 0 to 5 volts.

20

Figure II.7 Pitot-Static Probe Layout

Figure II.8 Pressure Transducer

Figure II.9 Pitot-Static Probe Mounted on FROG

21

2. Angle of Attack and Sideslip Angle Sensor

Angle of Attack (Alpha, α, AOA) is defined as the

angle between the relative wind in the plane of symmetry

and the longitudinal axis of the aircraft. Sideslip Angle

(Beta, β) is defined as the angle between the wind vector

and the plane of symmetry. Figure (II.9) illustrate these

definitions:

Figure II.10 α and β Definition

Wind vanes mounted on potentiometers are used to

measure α and. β Note that the β vane actually measures

“flank angle of attack” but since α is small, true β can be

approximated by “flank angle of attack”.

The vane-potentiometer assembly is mounted on a probe

that is similar to the pitot-static probe at the wing tip.

The wind vanes are attached to the shaft of the

potentiometer. As the UAV pitches and/or yaws, the vanes

rotate and that causes the shaft to rotate. The rotation of

the shafts changes the resistance of the potentiometers and

− −α = β =1 1w v
tan sin

u V

−α = 1
f

v
tan

u

22

an analog output voltage signal is produced. With proper

calibration, the α and β angles of the FROG are obtained.

Figure II.11 α and β Vanes Mounted on Potentiometers

Further details about air data capture, calibration
and processing can be found in Chapter three (III.) and
[Ref. 2].

E. COORDINATE SYSTEMS

To develop the relationship between the GPS and the

IMU that is needed for attempting a Wind Estimation

solution, an understanding of coordinate systems involved

is essential.

Four different coordinate systems are used in this

thesis:

• True Inertial Coordinate System {I}

• Local Tangent Plane Coordinate System {LTP}

• Body-Fixed Coordinate System {b}

• Wind or Flight Path Coordinate System {w}

For the purposes of this thesis, the rotation of the

earth and its associated Coriolis' forces can be ignored

23

and the Local Tangent Plane Coordinate System can be

considered to be a True Inertial Coordinate System. Further

information about Coordinate Systems can be found in [Ref.

3].

1. True Inertial Coordinate System {I}

The True Inertial Coordinate System is a set of

mutually perpendicular axes that neither accelerate nor

rotate with respect to some fixed point in space. Newton

assumed there was a reference frame whose absolute motion

was zero, fixed relative to the stars, and it is in this

reference frame where Newton's laws are valid. However,

Newton's laws of motion can also be applied to any

reference frame as long as the proper coordinate

transformations are used.

2. Local Tangent Plane Coordinate System {LTP}

This coordinate system is defined by extending a ray

from the center of the earth to its surface. A plane is

attached tangent to the point of intersection of the ray

with the Earth's surface and this point becomes the origin

of the system. While it is somewhat arbitrary, for our

purposes it is defined the positive x-axis direction as

pointing true east, the positive y-axis direction as

pointing true north, and the positive z-axis direction as

pointing up (away from the center of the earth). This is

depicted in Figure (II.12).

24

Figure II.12 Local Tangent Plane Coordinate System

3. Body-Fixed Coordinate System {b}

The Body-Fixed Coordinate System is a right hand

orthogonal system with the origin at the center of gravity

of the air vehicle. The positive x-axis direction points

toward the nose. The positive y-axis direction points out

the right wing and the positive z-axis direction points

towards the bottom of the air vehicle. The velocity of the

air vehicle with respect to the Inertial Coordinate System,

resolved along the x, y, and z axes of the Body-Fixed

Coordinate System, are termed u, v, and w, respectively.

The angular rate of rotation of the air vehicle with

respect to the Inertial Coordinate System, resolved in the

Body-Fixed Coordinate System, are called p, q, and r,

respectively. Positive values for angular rates in the

Body-Fixed frame are shown in Figure (II.12).

Equator Line

Greenwich
Meridian {NEU}

Tangent
Plane

25

Figure II.13 Body Frame Angular Rates Definition

4. Wind or Flight Path Coordinate System {w}

The Wind Coordinate System is also a right hand

orthogonal system with its origin at the center of gravity

of the air vehicle. The x-axis is aligned with the velocity

vector of the air vehicle. The orientation of the Wind

Coordinate System with respect to the Body-Fixed Coordinate

System is defined in terms of the angles α and β. The

equations for α and β are given below:

 ()1tan w
vα −= (3)

 ()1sin v
Vβ −= (4)

26

Figure II.14 Wind Coordinate System Definition

5. Coordinate Transformations

In order to use the coordinate systems mentioned

above, one must be able to transform between them freely.

For this thesis two transformations are going to be used:

a. Body to Inertial {b} to {I}

The Euler Angles φ, θ and ψ, named roll, pitch,

and yaw are defined in order to express the orientation of

the Body-Fixed Coordinate System with respect to the

Inertial Coordinate System. For the purposes of this

thesis, a 3-2-1 Euler angle transformation will be used.

The 3-2-1 transformation is given without an explanation

but a good development can be found in [Ref. 3 and 4].

Nature of the angular rotation is more apparent when the

transformation is expressed as the product of three

rotation matrices. In the case of a 3-2-1 rotation

sequence, the three matrices in Equation (5) correspond to

27

rotations about the yaw, pitch, and roll axes of the air

vehicle.

cos sin 0 cos 0 sin 1 0 0

sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

i bV V

Ψ Ψ θ θ
Ψ Ψ φ φ

θ θ φ φ

−     
     = −     
     −     

 (5)

Of course, the three matrices can be multiplied

out for an analytic result contained in a single matrix:

cos cos cos sin sin sin cos sin sin cos sin cos

cos sin cos cos sin sin sin sin cos cos sin sin

sin sin cos cos cos

i bV V
θ Ψ φ Ψ φ θ Ψ φ Ψ φ θ Ψ
θ Ψ φ Ψ φ θ Ψ φ Ψ φ θ Ψ

θ φ θ φ θ

− + + 
 = + + 
 − 

 (6)

Where iV is a free vector resolved in {I} and bV

is the same vector resolved in {b}. The inverse is also

defined, since the transformation is orthonormal. The

inverse is the transpose of the rotation matrix shown in

Equation (6).

As previously mentioned, the IMU used on the FROG

for this thesis is equipped with rate gyros that provide

the angular velocity components in the Body Coordinate

System (p, q and r). The body reference frame’s angular

rate can be related to the change of Euler Angles by a

transformation matrix [Ref.4]. This is given by:

1 sin tan cos tan

0 cos sin

0 sin sec cos sec

φ φ θ φ θ
θ φ φ

φ θ φ θΨ

•

•

•

 
     
     = −     
          

p

q

r

 (7)

28

b. Wind to Body {w} to {b}

The angles α and β define the orientation of the

Wind Coordinate System with respect to the Body-Fixed

Coordinate System, therefore a transformation matrix can be

obtained that relates a free vector resolved in {w} to the

same vector resolved in {b}. The transformation is

expressed as:

cos cos cos sin sin

sin cos 0

sin cos sin sin cos

b wV V

α β α β α
β β

α β α β α

− − 
 =  
 − 

 (8)

Where bV is a free vector resolved in {b} and wV

is the same vector resolved in {w}.

F. WIND ESTIMATION THEORY

As stated in the previous point (E.), for this thesis

Local Tangent Plane Coordinate System {LTP} is considered

to be True Inertial Coordinate System {I}, therefore the

Wind Estimation can be obtained by solving the following

equation:

 , ,
i i i

w b i w b wV V RV= − (9)

The vector i
wV stands for “wind velocity in the

inertial frame” which is actually the True Wind that needs

to be estimated.

The vector ,
i

b iV stands for “velocity of the body with

respect to the inertial frame solved in the inertial

frame”. ,
i
b iV is given directly by the DGPS and for Wind

Estimation purposes only components of the x-axis and y-

axis are considered.

29

The vector ,b wV stands for “velocity of the body with

respect to the wind frame”.

The matrix i
w R represents the transformation matrix

form the Wind Coordinate System to the Inertial Coordinate

System, where:

 i i b
w b wR R R= (10)

The matrices i
bR and

b
w R are rotational matrices defined

by Equations (6) and (7), therefore when both matrices are

applied to a free vector resolved in the Wind Coordinate

System {w}, the same vector resolved in the Inertial

Coordinate System {I} is obtained.

 , , ,= =i i b i
w b w b w b w b wRV R RV V (11)

The vector ,
i

b wV stands for “velocity of the body with

respect to the wind frame solved in the inertial frame”.

Equation (5) that solves for Wind Estimation can be

graphically represented by:

Figure II.15 Wind Estimation Solution

30

THIS PAGE INTENTIONALLY LEFT BLANK

31

III. WIND ESTIMATION MODEL

Due to the complexity of the model at hand it will be

presented using smaller modules.

The general layout of the Wind Estimation Model is

shown in Figure (III.1):

Figure III.1 Wind Estimation Model Layout

Figure (III.1) includes three main sections. The right

hand side module computes Wind, the central module executes

necessary calibrations of the incoming data in order to

obtain physical meaning of it, and the left hand side

module addresses data capture, i.e., capturing data coming

from the FROG’s IMU through both Tattletale8 and decoding

it.

The above solution was constructed in a SIMULINK

environment and subsystems/blocks from the XPC Target

32

library where included in the capturing/decoding module, so

a Real-Time Workshop model could be later build.

A. WIND ESTIMATION SOLUTION MODULE

The Wind Estimation solution will be based on the

theory presented on Chapter two (II). Recall Equation (8),

(9), (6) and (7).

 , ,
i i i

w b i w b wV V RV= − (8)

 i i b
w b wR R R= (9)

cos cos cos sin sin sin cos sin sin cos sin cos

cos sin cos cos sin sin sin sin cos cos sin sin

sin sin cos cos cos

i bV V
θ Ψ φ Ψ φ θ Ψ φ Ψ φ θ Ψ
θ Ψ φ Ψ φ θ Ψ φ Ψ φ θ Ψ

θ φ θ φ θ

− + + 
 = + + 
 − 

 (6)

cos cos cos sin sin

sin cos 0

sin cos sin sin cos

b wV V

α β α β α
β β

α β α β α

− − 
 =  
 − 

 (7)

From the above set of equations, Wind Estimation will

be obtained by solving for i
wV (wind velocity in the

inertial frame). This will be the output of interest for

the estimation model and the following inputs will be

needed:

• ,
i
b iV (for the model VinGPS): Obtained from the DGPS

ground speed. For Wind Estimation purposes only

components of the x-axis and y-axis are to be

calculated and considered. In this component

calculation, DGPS heading (for the model GrTr) and

DGPS ground speed (for the model Vgps) are

required as the inputs.

33

• ,b wV (for the model Vair)): Obtained from the Air

Data sensors. Again, for Wind Estimation purposes

only components of the x-axis and y-axis are to

be calculated and considered.

• α and β (for the model aoa and beta): Obtained

from the Air Data sensors.

• φ, θ and ψ (for the model phi, theta and psi):

The Euler Angles are obtained from the angular

rates p, q and r given by the FROG’s IMU.

Figure III.2 Wind Estimation Input Visualization and
General Layout

Details of the main blocks for the above figure can be

found in Appendix B.

In Figure (III.2), the vertical rectangular blocks in

the center part of the model (green colors) perform the

mathematics related with , ,=i i b
w b w b w b wRV R RV and the square

shape block at the top part of the model (magenta color)

34

solves for ,
i

b iV . These two last results are subtracted and

the Real Wind velocity is obtained.

The selector on the right hand side of the model

disregards of the z component for the estimated wind, as

only components of x and y axes are going to be used.

When solving for the velocity of the platform in the

inertial frame, the DGPS input for the Ground Track GrTr

must consider an initial condition related with the heading

of the FROG at the take-off position. This is accomplished

by the subtraction of the constant (293.52627…) that

corresponds to the orientation of the runway in degrees

given by the DGPS at the take-off position of the FROG.

B. DATA RECEPTION MODULE

The Wind Estimation model uses a RS-232 Mainboard

block from the XPC Target library of SIMULINK, to setup the

serial port used for receiving incoming data from the

Tattletales. As seen on Chapter Two (II.), the arriving

data will be presented in three different types of sentence

structures, which can be recognized by its headers. Once

the data has been received it must be decoded in order to

obtain the individual input variables that the model will

handle.

In the decoding part, first a header must be found in

the incoming serial data and depending on its

identification a decoding procedure must be applied to the

rest of that particular sentence to obtain variables of

interest.

To accomplish the header/data identification and the

later data decoding procedures, software interface drivers

where written in C Programming and conform to S-function

35

standards [Ref. 5]. Dr. Vladimir Dobrokhodov (NPS) made

this work, which is out of the scope of this thesis. The,

codes are included on Appendix B for further reference.

Figure III.3 Data Receive Layout and RS-232 Setup

Figure III.4 Data/Header Block Details

36

Figure III.5 Data Decoder

From Figures (III.4) and (III.5) the written software

interfaces drivers where “readserial”, which generates the

output vectors Header and Data; “imudec”, which generates the

output vector IMUout; “gpsdec”, which generates the output

vector GPSout, and “a2ddec”, which generates the output

vector A2Dout (codes for software interfaces drivers are

included on Appendix B).

C. DATA CALIBRATION MODULE

The Calibration Module receives three vectors IMUout,

GPSout and A2Dout. For each vector, every element contains a

numerical representation of data that has been originally

measured by a sensor, pre processed by the Tattletales and

decoded in the Data Reception Module.

The purpose of the Calibration Module is to perform a

correlation between those numerical quantities and their

corresponding value in the MKS Units System, so that every

measurement performed by a sensor could be used as a

variable in the Wind Estimation Model.

37

The Wind Estimation Model uses only some elements of

each vector and they will be explained separately.

1. The IMUout Vector

Only five elements of this vector are used as

variables of the Wind Estimation Model: Angle of Attack

(aoa), Sideslip Angle (beta) and the three angular rates

obtained from the IMU’s rate gyros (p, q and r):

Figure III.6 Calibration Module IMUout Vector

For the five variables shown in Figure (III.6) the

incoming numerical values are converted into Degrees (for

the angles) and Degrees per Second (for the angular rates).

Once these new representations are obtained, Degrees are

converted to Radians so MATLAB trigonometric functions can be

later used.

In order to obtain the mathematical expressions

contained in the rectangular blocks (blue) of Figure

(III.6), sensor calibration procedures must be carried out.

38

This work was performed in Laboratory under controlled

environments and consists on obtaining a wide range of

numerical representations given by the data acquisition

package of the model (i.e. Tattletale processing and

decoding procedures) against it corresponding measured

value.

The data is then tabulated and the calibration

equations are obtained via curve fitting tools.

For Alpha and Beta samples where recorded every 5° over

a range of ± 40° and the following plot of the tabulated

values was obtained [Ref. 2]:

Alpha Beta POT Calibration (Done on aircraft)

y = -0.0099527x + 170.11

y = 0.0099514x - 129.2

-60

-40

-20

0

20

40

60

0 5000 10000 15000 20000 25000

Voltage [V]

A
ng

le
 [o]

Alpha POT
Beta POT
Linear (Alpha POT)
Linear (Beta POT)

Figure III.7 Alpha and Beta Sensor Calibration Results

Comparing the curve fitting equations shown in Figure

(III.7) with the corresponding blocks of Figure (III.6), it

can be verified that for Beta the equation was applied

directly. For Alpha, the sign difference was corrected by a

(–1) multiplication (red triangular block) and a 7.5°

correction was included because of an angular difference

between the Alpha vane pod and the longitudinal axis of the

FROG once the sensor was installed on the wing tip.

39

To obtain angular rate equations (p, q and r), the

FROG’s IMU was mounted on a Tilting Rotary Table Model TRT7

built by, HAAS Automation Inc. and available at the

Controls Laboratory of the NPS Electrical Engineering

Department.

An accurate control system provided by the rotary

table, allowed tilting the IMU at different angular rates

while numerical values from the rate gyros where obtained

by the data acquisition package of the model. Again, all

corresponding data was tabulated and equations where found.

From the obtained data, constant drift characteristics

where observed on each gyro and those values where

corrected as can be seen in Figure (III.6) (green blocks).

Furthermore, from the sensor calibration procedures it was

detected that the rate gyros for p and q where oriented in

the wrong direction. Later this was physically confirmed

and was corrected by a (–1) multiplication (red triangular

block).

2. The GPSout Vector

Only two elements of this vector are used as variables

of the Wind Estimation Model: Ground Speed (Vgps) and

Ground Track (GrTr).

Both signals are obtained from the DGPS Trimble Ag132

and do not require any kind of sensor calibration. The

sentence format shown in Chapter two (II.) is captured and

decoded by the data acquisition package of the model.

The only issue that has to be considered at this point

is that the DGPS velocity given in Knots and the track in

Degrees. Corrections are made in the red triangular blocks,

as velocity must be converted to Meters per Second (MKS)

and Degrees to Radians (MATLAB’S requirement).

40

Figure III.8 Calibration Module GPSout Vector

3. The A2Dout Vector

Only one element of this vector is used as an input

variable of the Wind Estimation Model: Air Speed (Vair).

A similar sensor calibration procedure to those used

for signals in vector IMUout was performed and a quadratic

equation was implemented in this module. Details of this

sensor calibration can be found in [Ref. 2].

Figure III.9 Calibration Module A2Dout Vector

41

IV. FLIGHT TEST

The Wind Estimation Model was constructed in a SIMULINK

environment using subsystems from the XPC Target library.

This characteristic of the model allows using MATLAB’s

Real-Time Workshop to provide a real-time development

environment from where Wind Estimation results are

obtained.

To accomplish this, FROG is connected with a rapid

prototyping target computer PC-104 (XPC Target). The target

computer is linked to the physical sensors and

microprocessors (Tattletale8) to carry out data

acquisition. Real-Time Workshop transforms the Wind

Estimation Model to C code and creates an executable of the

model and places it on the target system.

The model is downloaded from a ground station Host PC

via the Data Link assembly described in Chapter Two (II.),

which also allows the required real-time monitoring of wind

estimation results. Figure (IV.1) shows the general layout

of this environment:

Figure IV.1 XPC Target Environment [From Ref. 6]

42

A. FLIGHT TEST PROFILE AND GENERAL PROCEDURES

The FROG was flown at the McMillan Airfield at Camp

Roberts, California on 9 October 2002. The main objective

of the test was to verify the Wind Estimation Model by

comparing its wind estimation results against real wind

measurements performed by the NPS Meteorology Department.

The flight profile for the UAV was straight and level

passes on the runway heading with a turn at each end at an

approximate flight level of 50 feet AGL. Figure (IV.1)

shows the flight profile of the test flight obtained with

the GPS unit onboard the FROG and an aerial photo of the

airfield. The flight profile is in GPS coordinates

(Longitudinal Minutes versus Lateral Minutes).

4 5 . 5

4 5 . 6

4 5 . 7

4 5 . 8

4 5 . 9

4 6

4 6 . 1

4 6 . 2

4 6 . 3

4 6 . 4

4 2 . 9 4 2 . 9 5 4 3 4 3 . 0 5 4 3 . 1 4 3 . 1 5 4 3 . 2 4 3 . 2 5 4 3 . 3

G P S L a t M i n

Figure IV.2 Flight profile of FROG during test flight
(left) and McMillan Airfield (right)

NPS Meteorology Department performed data collection

at the demonstration site. The collection was done with

three ground-stations and one Rawinsonde system (balloon),

which allowed a 3-D description of the tested air volume.

The ground station systems operated continuously

during the entire time collection period. The Rawinsonde

43

system was used at scheduled times to collect profiles of

vector winds, temperature, and humidity.

For the continuous ground-based measurements, portable

instrumented meteorological towers were installed on

October 2, 2002 in continuous operation mode until removed

October 10, 2002. The tower designation and location were:

West Tower: 50 ft South of the NW end of the runway.

East Tower: on a hill several hundred ft North of the

midpoint of the runway.

North Tower: 50 ft north of the SE end of the runway.

Figure IV.3 Instrumented Portable Meteorological Tower

The towers were instrumented for true vector wind

(speed and direction reference to true North), air

pressure, air temperature and humidity. The sensors were

sampled at 1 Hz and the output averaged over a two-minute

interval.

44

B. TEST FLIGHT RESULTS

Validation of the Wind Estimation Model was based on a

nine-minute flight at 50 ft high over McMillan Airfield,

following the flight profile showed on Figure (IV.). The

data collected during the flight was used to estimate wind

and compare it to measured true wind by the meteorological

equipment.

Validation legs were referred to the runway

orientation of 290° so data of interest was collected during

general DGPS headings of 300° and 120°. The average speed

for the FROG for the valid paths was 66 knots.

Next figure presents the results of wind direction and

velocity (left side) as well as the data collected by the

meteorological towers (right side). This data corresponds

to a general heading of the FROG of 280°.

Figure IV.4 Wind Estimation Results Straight Path

45

Summary of the comparison of the averaged results is

presented in a table below.

 Wind Magnitude Wind Direction
Real-Time Model

Results
6.5 m/s 210°

Meteorological
Measurements

4.9 m/s 214°
Error 1 - 3 m/s 1°-5°

Table IV.1 Wind Results Comparison

From the above table we have:

Figure IV.5 Wind Direction Results

Clearly, the wind velocity and direction results match

those obtained by the meteorological towers fairly well.

This comparison indicates that Wind Estimation based on the

UAV sensors was successful.

46

C. REAL-TIME PRESENTATION FOR WIND ESTIMATION

The real-time presentation of the results was done

using SIMULINK/Real-Time Workshop available features.

A simple SIMULINK model as the one shown in Figure

(IV.6) can be run on the Host PC. The “From xPC Target”

blocks available in the xPC Library capture real-time

output variables from the Wind Estimation Model. This is

possible since both computers are connected via the Data

Link assembly.

Once these variables are available in the SIMULINK

model, they can be mathematically related and results can

be displayed using blocks from the Dials and Gages Library.

This can be seen in Figure (IV.6):

Figure IV.6 Real-Time Presentation Example

47

V. CONCLUSIONS AND RECOMENDATIONS

A. CONCLUSIONS

The primary goal of this thesis was to obtain real-

time Wind Estimation based on data collected by embedded

sensors of a UAV platform and to validate those results by

a comparison to wind measurements obtained by calibrated

meteorological equipment.

Highly accurate meteorological and navigation

information has been obtained during the flight tests that

prove the efficiency of the UAV employment. Developed

hardware architecture has confirmed the idea of a real-time

data acquisition airborne unit for the task of

meteorological prediction.

Currently employed hardware components provide a state

of the art in portability of UAV system deployment. Created

real time software has shown its compatibility with real-

time processing requirements, adequate accuracy and

robustness.

Analyzed results have revealed a significant potential

and promising direction in UAV based system that should be

further addressed.

B. RECOMMENDATIONS

Future work would include an improvement of hardware

design that allows more flexibility in hardware rigging. It

should support an exchangeable utilization of more precise

and numerous heterogeneous sensors including a “full”

variety of possible chemical/biological agents detectors.

Software enhancement should address two principal

issues that allow moving the project onto direction of

48

increased autonomy. The first topic includes an

implementation of complimentary filtering technique to

provide better resolution of the heterogeneous information

from variety of possible sensors. The other issue should

address the development and implementation of pilot support

tools to extend the operational area and simplify the

navigation task. It can be achieved by the development and

implementation of such trajectory pattern (grid) where UAV

is autonomously guided and also by employing a modern GPS

based technique through the real-time visualization of

navigational data.

49

APPENDIX A. DESCRIPTION OF THE FOG-R UAV (NPS FROG)

Figure A. 1 FROG Main Characteristics

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

APPENDIX B. WIND ESTIMATION MODULE DESCRIPTION

The objective of this appendix is to provide a

detailed description of the Wind Estimation Module used in

the Wind Estimation Model. Mathematics in this appendix

refer to Chapter Two (II.)

On Figure (B.1), the blue blocks correspond to SIMULINK

library Variable Selectors that provide the necessary

inputs to the module:

Figure B.1 Wind Estimation Module General Layout

52

The Wind Estimation Block (white on Figure B.1) mainly

contains:

Inertial Velocity Block (magenta).

Velocity Wind to Body Block (light green).

North/East Down Block (dark green).

Recall Figure (III.2):

Figure B. 2 From Chapter Three Figure (III.2)

For the Inertial Velocity block we have:

Figure B.3 Inertial Velocity Block.

Note that the w component of the DGPS velocity is

cancelled.

53

For the Velocity Wind to Body Transformation block we

have:

Figure B.4 Wind to Body Transformation

For the Wind Frame input only the x component is

considered. This represents the impact wind over the pitot

tube of the UAV (longitudinal axis).

54

For the North/East/Down block we have:

Figure B.5 Body to Inertial Transformation

And for the “phidot thetadot psidot” block we have:

Figure B. 6 Phidot Thetadot Ppsidot Block

55

APPENDIX C. SOFTWARE DRIVERS

This appendix contains the C Programming source code

written to receive and decode the data streams from the

FROG’s IMU. Dr. Vladimir Dobrokhodov wrote these drivers.

All the C-codes had to be packaged into MATLAB’s S-Function

Level 2 structure which adopts a specific sequence to

initialize a simulation block, update its states, control

sampling rates, output data and terminate the function.

Each set of code has to be “MEX” by a compatible C-compiler

in MATLAB and ‘build’ into executable code by XPC’s Real-

Time Workshop before it can be called from within a SIMULINK

block as a S-Function. Details of how this is done are

discussed in [Refs. 5 and 6].

1. SERIAL DATA RECEIVE DRIVER

readserial.c

/* $Revision: 1.1 $ $Date: 2001/07/20 22:11:41 $ */
/* rs232rec.c - xPC Target, non-inlined S-function driver for RS-232 */
/* receive (asynchronous) */
/* Copyright 1996-2001 The MathWorks, Inc. */

#define S_FUNCTION_LEVEL 2
#undef S_FUNCTION_NAME
#define S_FUNCTION_NAME readserial

#include <stddef.h>
#include <stdlib.h>

#include "tmwtypes.h"
#include "simstruc.h"

#ifdef MATLAB_MEX_FILE
#include "mex.h"
#else
#include <windows.h>
#include <string.h>
#include "rs232_xpcimport.h"
#include "time_xpcimport.h"
#endif

56

/* Input Arguments */

#define NUMBER_OF_ARGS (3) /*Number of parameters in

a block parameters
dialog */

#define PORT_ARG ssGetSFcnParam(S,0) /*Number of Serial Port*/
#define WIDTH_ARG ssGetSFcnParam(S,1) /*Maximum width of

INCOMING sentence per
packet*/

#define SAMP_TIME_ARG ssGetSFcnParam(S,2) /*Sample time*/

#define NO_I_WORKS (3) /*Current pos pointer in

buf, rec length,
bufCount*/

#define NO_R_WORKS (0)
#define NO_P_WORKS (0)
#define NO_D_WORKS (1) /*for buf array*/

#define HEADER (36) /*$- sign*/

static char_T msg[256];
extern int rs232ports[];
unsigned char remains; /*global array to save remains after

subtracting procedure*/

static void mdlInitializeSizes(SimStruct *S)
{
#ifndef MATLAB_MEX_FILE
#include "rs232_xpcimport.c"
#include "time_xpcimport.c"
#endif

 ssSetNumSFcnParams(S, NUMBER_OF_ARGS);
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 sprintf(msg,"Wrong number of input arguments passed.\n"
 "%d arguments are expected\n",NUMBER_OF_ARGS);
 ssSetErrorStatus(S,msg);
 return;
 }

 /* Set-up size information */

 ssSetNumContStates(S, 0);
 ssSetNumDiscStates(S, 0);
 ssSetNumOutputPorts(S, 3); /*func-call,data, header index*/
 ssSetNumInputPorts(S, 2); /*rec length, enable*/

 ssSetOutputPortWidth(S, 0, 1); /*Function-call*/

 ssSetOutputPortWidth(S, 1, (int)mxGetPr(WIDTH_ARG)[0]); /*Data*/
 ssSetOutputPortDataType(S, 1, SS_UINT8);

 ssSetOutputPortWidth(S, 2, 1); /*Header index*/
 ssSetOutputPortDataType(S, 2, SS_UINT8);

 ssSetInputPortDirectFeedThrough(S, 0, 1);
 ssSetInputPortDirectFeedThrough(S, 1, 1);

57

 ssSetInputPortWidth(S, 0, 1);
 ssSetInputPortWidth(S, 1, 1);

 ssSetInputPortRequiredContiguous(S, 0, 1);
 ssSetInputPortRequiredContiguous(S, 1, 1);

 ssSetNumSampleTimes(S,1);
 ssSetNumIWork(S, NO_I_WORKS);
 ssSetNumRWork(S, NO_R_WORKS);
 ssSetNumPWork(S, NO_P_WORKS);
 ssSetNumDWork(S, NO_D_WORKS);

 ssSetDWorkDataType(S, 0, SS_UINT8);
 ssSetDWorkWidth(S, 0, (int)mxGetPr(WIDTH_ARG)[0]);
 ssSetDWorkWidth(S, 0, 2048);

 ssSetNumModes(S, 0);
 ssSetNumNonsampledZCs(S, 0);

/* This S-function’s parameters cannot be changed in the middle of */
/* a simulation, hence set them to be non-tunable. */

 {
 int_T ntune;
 for (ntune=0; ntune < NUMBER_OF_ARGS; ntune++) {
 ssSetSFcnParamNotTunable(S, ntune);
 }
 }
 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_PLACE_ASAP);
}
/* Function to initialize sample times */

static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, mxGetPr(SAMP_TIME_ARG)[0]);
 if (mxGetN((SAMP_TIME_ARG))==1) {
 ssSetOffsetTime(S, 0, 0.0);
 } else {
 ssSetOffsetTime(S, 0, mxGetPr(SAMP_TIME_ARG)[1]);
 }
 ssSetCallSystemOutput(S, 0);
}

/* Function: mdlStart */
/* == */
/* Abstract: */
/* At the start of simulation in RTW, print a message to the MATLAB */
/* command window indicating that something is going on. */

#define MDL_START /*Change to #undef to remove function*/
#if defined(MDL_START)
static void mdlStart(SimStruct *S)
{
#ifndef MATLAB_MEX_FILE

 ssGetIWork(S)[0] = 0; /* set current buf pointer = 0 */

58

 ssGetIWork(S)[2] = 0; /* set bufCount = 0 */

 printf("\n readserial.c: This is a beginning of data logging

procedure");

#endif
}
#endif

/* Function to compute outputs */

static void mdlOutputs(SimStruct *S, int_T tid)
{
#ifndef MATLAB_MEX_FILE

int width = (int)mxGetPr(WIDTH_ARG)[0]; /*specify output port width
 =WIDTH_ARG that is the max
 length of GPS sentence*/
int port = (int)mxGetPr(PORT_ARG)[0] - 1; /*specify COM#*/
unsigned char tmp; /*temp char holder*/
unsigned char *buf = (unsigned char *)ssGetDWork(S, 0);/*uchar buffer
 to contain bytes
 from serial port*/
int *current = ssGetIWork(S); /*current = addr of current position
 pointer in buffer*/
int *recLength = ssGetIWork(S) + 1; /*recLength = addr of received
 data length*/
int *bufCount = ssGetIWork(S)+ 2; /*count number of useful bytes in
 buffer*/

int serbufCount; /*count number of useful bytes collected in Serial
 buffer*/
int i, j,checksum;
int *bl_header; /*boolean values for IMU=1, GPS=2 and A2D=3
 sentences, 0=nothing found*/
int headwidth=2; /*length of header except*/
int imulng=28,gpslng=31,a2dlng=18; /*initialize length of

IMU(28),GPS(29+2{CR,LF}) and
A2D(16+2{CR,LF}) sentences without
header*/

 if (ssGetInputPortRealSignal(S, 1)[0] == 0) /*If there is no bytes

available so function is disabled. Stop
processing and get out */

 return;

serbufCount = rl32eReceiveBufferCount(port); /*Check number of
 bytes available*/

 while (serbufCount) { /*transfer everything from serial buffer to

buffer*/
 tmp = rl32eReceiveChar(port);

59

 if ((tmp & 0xff00) != 0) { /*only last 8 bits can be
 non-zero*/

 printf("RS232Receive Error: char & 0xff00 != 0 \n");

 return;
 }
 buf[(*current)++] = tmp & 0xff; /*put valid char into buffer

& means if both operand equal
to 1 the output assigns to 1*/

 serbufCount--; /*reduce serbufCount*/
 (*bufCount)++; /*increase bufCount correspondingly*/
 }

 if (*bufCount < width) return; /*Not enough bytes to decode,
 output old value*/

/* Initialize logical flags* /

 i = 0;

 while(((buf[i]==221 && buf[i+1]==221) ||
 (buf[i]==238 && buf[i+1]==238) ||
 (buf[i]==255 && buf[i+1]==255)) == 0 && I < (*bufCount-1))

 { i=i+1; } /*end of while. Just looking for any first
 header*/

/* Begin to substruct corresponding arrays if we have enough bytes */

 while (i+max(max(imulng,gpslng), a2dlng) <= (*bufCount)) {

 checksum = buf[i]*256 + buf[i+1];
 i = i + 2;

 if (checksum==65535 & i+imulng <= (*bufCount)) {
 /*IMU Header FF FF -255 255 take imulng bytes and
 send it out*/
 *bl_header=1; /*IMU found*/
 memcpy(ssGetOutputPortSignal(S,1),buf+i,imulng);
 i = i + imulng; /*next byte to process*/
 } /*if checksum matches*/

 if (checksum == 61166 & i+gpslng <= (*bufCount)) {
 /*GPS Header EE EE -238 238 take imulng bytes and
 send it out*/
 *bl_header=2; /*GPS found*/
 memcpy(ssGetOutputPortSignal(S,1),buf+i,gpslng);
 i = i + gpslng; /*next byte to process*/
 } /*if checksum matches*/

 if (checksum == 56797 & i+a2dlng <= (*bufCount)) {
 /*A2D Header DD DD -221 221 take imulng bytes and
 send it out*/
 *bl_header=3; /*A2D found*/
 memcpy(ssGetOutputPortSignal(S,1),buf+i,a2dlng);
 i = i + a2dlng; /*next byte to process*/

60

 } /*if checksum matches*/
 /*end of subtracting while*/

/* Send Header index to know how much bytes has to be decoded in each
 message */

 memcpy(ssGetOutputPortSignal(S,2),bl_header,1);
 } /*end of while*/

/* Substitute remain bytes from this step at the beginning of "buf"
 save remain bytes into the "buf" and shift current to the end of
 a new buffer */

 if (i<(*bufCount)) {

 *bufCount=*bufCount-i; //number of remain bytes

 for (j=0;j<*bufCount; j++) {buf[j]=buf[i];i++;} /*end of for*/

 *current=*bufCount;
 }

 ssCallSystemWithTid(S, 0, 0); /*issue done pulse to outport 0*/

 return;

#endif
}

/* Function to perform housekeeping at execution termination */

static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /*Is this file being compiled as a MEX-file?*/
#include "simulink.c" /*MEX-file interface mechanism*/
#else
#include "cg_sfun.h" /*Code generation registration function*/
#endif

2. ANALOG TO DIGITAL DATA RECEIVE DRIVER

a2ddec.c
/* File : a2ddec.c
 $Revision: 1.00 $V.Dobrokhodov */

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <iostream.h>
#include <string.h>

#define S_FUNCTION_NAME a2ddec

61

#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

/* Input Arguments */

#define NUMBER_OF_ARGS (1)
#define WIDTH ssGetSFcnParam(S,0) /*WIDTH is the max. length of
 incoming IMU sentence*/

/* Build checking */

static char_T msg[256];

/* Function: mdlInitializeSizes
 Abstract:
 Setup sizes of the various vectors. */

static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumSFcnParams(S, NUMBER_OF_ARGS);

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 sprintf(msg,"Wrong number of input arguments passed.\n"
 "%d arguments are expected\n",NUMBER_OF_ARGS);
 ssSetErrorStatus(S,msg);
 return; /*Parameter mismatch will be reported by Simulink*/
 }

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, int)mxGetPr(WIDTH)[0]);/*DYNAMICALLY_SIZED
 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S,1)) return;

 ssSetOutputPortWidth(S, 0, 8); /*A2D length=8 DYNAMICALLY_SIZED*/
 ssSetNumSampleTimes(S, 1);

/* Take care when specifying exception free code. See sfuntmpl_doc.c */

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE |
 SS_OPTION_USE_TLC_WITH_ACCELERATOR);
}

/* Function: mdlInitializeSampleTimes
 Abstract:
 Specifiy that we inherit our sample time from the driving block */

static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
 ssSetOffsetTime(S, 0, 0.0);
}

62

/* Function: mdlOutputs */

static void mdlOutputs(SimStruct *S, int_T tid)
{
 int_T i=0,j=0;
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
 /*Incoming data stream*/
 real_T *y = ssGetOutputPortRealSignal(S,0);
 int_T temp[100]; /*make an aliase for the uPtrs*/
 char ext[]="\0";
 int count=0,len_in;

 for (i=0; i<(*uPtrs[0]); i++) {temp[i] = (int_T)(*uPtrs[i+1]);}

 for (i=0; i<(*uPtrs[0])) {
 *y++=(real_T)(temp[i+0]*256 + temp[i+1]);
 i=i+2;
 } /*from GPSAtoD0 to GPSAtoD7*/
}

/* Function: mdlTerminate
 Abstract:
 No termination needed, but we are required to have this routine. */

static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /*Is this file being compiled as a MEX-file?*/
#include "simulink.c" /*MEX-file interface mechanism*/
#else
#include "cg_sfun.h" /*Code generation registration function*/
#endif

3. GPS DATA RECIEVER DRIVER

gpsdec.c
/* File : gpsdec.c
 $Revision: 1.00 $V.Dobrokhodov */

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <iostream.h>
#include <string.h>

#define S_FUNCTION_NAME gpsdec
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/* Input Arguments */

63

#define NUMBER_OF_ARGS (1)
#define WIDTH ssGetSFcnParam(S,0) /*WIDTH is the max length of incoming
 IMU sentence */
/* Build checking */

static char_T msg[256];

/* Function: mdlInitializeSizes
 Abstract:
 Setup sizes of the various vectors. */

static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumSFcnParams(S, NUMBER_OF_ARGS);
 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 sprintf(msg,"Wrong number of input arguments passed.\n"
 "%d arguments are expected\n",NUMBER_OF_ARGS);
 ssSetErrorStatus(S,msg);
 return; /*Parameter mismatch will be reported by Simulink*/
 }

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, (int)mxGetPr(WIDTH)[0]);
 /*DYNAMICALLY_SIZED*/
 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S,1)) return;

 ssSetOutputPortWidth(S, 0, 12); /*GPS length=12 DYNAMICALLY_SIZED*/
 ssSetNumSampleTimes(S, 1); /*Take care when specifying exception

free code - see sfuntmpl_doc.c */
 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE |
 SS_OPTION_USE_TLC_WITH_ACCELERATOR);
}

/* Function: mdlInitializeSampleTimes
 Abstract:
 Specifies that we inherit our sample time from the driving block. */

static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
 ssSetOffsetTime(S, 0, 0.0);
}

/* Function: mdlOutputs */

static void mdlOutputs(SimStruct *S, int_T tid)
{
 int_T i=0,j=0;
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
 /*Incoming data stream*/
 real_T *y = ssGetOutputPortRealSignal(S,0);
 int_T temp[100]; /*make an aliase for the uPtrs*/
 char ext[]="\0";
 int count=0,len_in;

64

 for (i=0; i<(*uPtrs[0]); i++){temp[i] = (int_T)(*uPtrs[i+1]);}

 *y++=(real_T)(temp[0]);
 *y++=(real_T)(temp[1]);
 *y++=(real_T)(temp[2] + temp[3]/10);
 *y++=(real_T)(temp[4]);
 *y++=(real_T)(temp[5] + (temp[6]*2^24 + temp[7]*2^16 +
 temp[8]*2^8+ temp[9])/1000000);
 *y++=(real_T)(temp[10]);
 *y++=(real_T)(temp[11] + (temp[12]*2^24 + temp[13]*2^16 +
 temp[14]*2^8 + temp[15])/1000000);
 *y++=(real_T)(temp[16]);
 *y++=(real_T)(temp[17]*256 + temp[18] + temp[19]/100);
 *y++=(real_T)(temp[20]*256 + temp[21] + temp[22]/100);
 *y++=(real_T)(temp[23]*256 + temp[24] + temp[25]/100);
 *y++=(real_T)(temp[26]*256 + temp[27] + temp[28]/10);
}

/* Function: mdlTerminate
 Abstract:
 No termination needed, but we are required to have this routine. */

static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /*Is this file being compiled as a MEX-file?*/
#include "simulink.c" /* MEX-file interface mechanism*/
#else
#include "cg_sfun.h" /*Code generation registration function*/
#endif

4. IMU DATA RECEIVE DRIVER

imudec.c
/* File : imudec.c
 $Revision: 1.00 $V.Dobrokhodov */

#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <iostream.h>
#include <string.h>

#define S_FUNCTION_NAME imudec
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/* Input Arguments */

#define NUMBER_OF_ARGS (1)
#define WIDTH ssGetSFcnParam(S,0) /*WIDTH is the max length of incoming

65

 IMU sentence*/
/* Build checking */

static char_T msg[256];

/* Function: mdlInitializeSizes
 Abstract:
 Setup sizes of the various vectors. */

static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumSFcnParams(S, NUMBER_OF_ARGS);

 if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
 sprintf(msg,"Wrong number of input arguments passed.\n"
 "%d arguments are expected\n",NUMBER_OF_ARGS);
 ssSetErrorStatus(S,msg);
 return; /*Parameter mismatch will be reported by Simulink*/
 }

 if (!ssSetNumInputPorts(S, 1)) return;

 ssSetInputPortWidth(S, 0, int)mxGetPr(WIDTH)[0]);
 /*DYNAMICALLY_SIZED*/
 ssSetInputPortDirectFeedThrough(S, 0, 1);

 if (!ssSetNumOutputPorts(S,1)) return;
 ssSetOutputPortWidth(S, 0, 14); /*IMU length=14 DYNAMICALLY_SIZED*/
 ssSetNumSampleTimes(S, 1); /*Take care when specifying exception

free code - see sfuntmpl_doc.c */

 ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE |
 SS_OPTION_USE_TLC_WITH_ACCELERATOR);
}

/* Function: mdlInitializeSampleTimes
 Abstract:
 Specifies that we inherit our sample time from the driving block. */

static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
 ssSetOffsetTime(S, 0, 0.0);
}

/* Function: mdlOutputs */

static void mdlOutputs(SimStruct *S, int_T tid)
{
 int_T i=0,j=0; /*Incoming data stream,*uPtrs[0]- determine the

length of useful bytes{28 for the IMU}*/
 InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
 real_T *y = ssGetOutputPortRealSignal(S,0);
 /*int_T width = ssGetOutputPortWidth(S,0);*/

 int_T temp[100]; /*make an aliase for the uPtrs*/
 char ext[]="\0";

66

 int count=0,len_in;
 for (i=0; i<(*uPtrs[0]); i++) {temp[i] = (int_T)(*uPtrs[i+1]);}

 for (i=0; i<(*uPtrs[0])) {
 *y++=(real_T)(temp[i+0]*256 + temp[i+1]);
 i=i+2;
 }
 /*notused(j,1), airtemp, airspeed,q, r, p, phi ,tetta, Hx, Hy,
 Hz, Ax, Ay, Az*/
}
/* Function: mdlTerminate
 Abstract:
 No termination needed, but we are required to have this routine. */

static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /*Is this file being compiled as a MEX-file?*/
#include "simulink.c" /*MEX-file interface mechanism*/
#else
#include "cg_sfun.h" /*Code generation registration function*/
#endif

67

LIST OF REFERENCES

1. www.baiaerosystems.com. 04-05-2003.

2. Tan, Kwang Liang, Precision Air Data Support for

Chem/Bio Attack Response, Master’s Thesis, Naval

Postgraduate School, Monterey, CA, March 2003.

3. Kaminer, Isaac, AA3276: Intro to Avionics, Course

Notes, Naval Postgraduate School, Monterey, CA,

September 1996.

4. Rogers, Robert M., Applied Mathematics in Integrated

Navigation Systems, AIAA Education Series, 2000.

5. SIMULINK Dynamic System Simulation for MATLAB, Writing S-

Functions Version 4, November 2000.

6. Real-Time Workshop For Use with SIMULINK, User’s Guide

Version 4, September 2000.

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Assoc Prof. Isaac Kaminer
Dept. of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, CA

4. Dr. Vladimir Dobrokhodov
Dept. of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, CA

5. Prof. Max Platzer
Dept. of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, CA

6. LCDR Cristián Sir
Chilean Navy
Naval Aviation Headquarters
Con-Cón, Chile

70

THIS PAGE INTENTIONALLY LEFT BLANK

